
Albis: High-Performance File Format
for Big Data Systems

Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle,
Adrian Schuepbach, Bernard Metzler,

IBM Research, Zurich

2018 USENIX Annual Technical Conference

Relational Data Processing Stack in the Cloud

2

Relational
Engines

File
Formats

Distributed
Storage

One of the most popular data processing paradigms

- Data organized in tables

- Analyzed using DSL like SQL

- Integrity protected using variants

But unlike classical RDBMs systems, they don’t manage their own storage

Relational Data Processing Stack in the Cloud

3

Relational
Engines

File
Formats

Distributed
Storage

Back to the Future - It is 2010

4

Relational
Engines

File
Formats

Hardware

Disks connected over 1/10 Gbps network

The I/O Revolution

5

2-3 orders of magnitude performance improvements
- latency : from msecs to μsecs
- bandwidth : from MBps to GBps
- IOPS : from 100s to 100K

The Impact of the Revolution

6

Hadoop
NameNode

Hadoop DataNode

Benchmark100 Gbps

3.1 GB/s x 4 = 12.4 GB/s

Micro-benchmark*

16 cores in parallel, reading
TPC-DS data set.
What is the bandwidth?

Why micro-benchmark?
Decouple from the SQL engine

*https://github.com/animeshtrivedi/fileformat-benchmarks

File format
...

The Impact of the Revolution

7

The Impact of the Revolution

8

Goodput Throughput

Formats like JSON bloat data upto 10x.
Hence we decouple amount of data vs.
how it is stored

The Impact of the Revolution

9

None of the modern file formats delivered performance close to the hardware

100 Gbps

74.9 Gbps: HDFS/NVMe

The Outdated Assumptions and Impact

10

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

The Outdated Assumptions and Impact

11

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

1. CPU is fast, I/O is slow
- trade CPU for I/O
- compression, encoding

But why now? CPU core speed is stalled, but …

1 Gbps HDD 100 Gbps Flash

Bandwidth 117 MB/s 140 MB/s 12.5 GB/s 3.1 GB/s

cycle/unit 38,400 10,957 360 495

The Outdated Assumptions and Impact

12

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

2. Avoid slow, random small I/O
- preference for large block scans

But leads to bad CPU cache performance

C0
C1
C2
C3 C7

C6
C5
C4

128 MB 1 GB cache size?

Bounded by the
poor cache/IPC

performance

Bounded by the
number of

instructions/row

The Outdated Assumptions and Impact

13

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

3. Remote I/O is slow
- pack data/metadata together

- schedule tasks on local blocks

But now network/storage is super fast? then
why still pack all data in a single block and try
to co-schedule tasks?

data

compute

data

compute

The Outdated Assumptions and Impact

14

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

4. Metadata lookups are slow
- decrease number of lookups by decreasing

number of files/directories

RAMCloud, Crail can do 10 millions of
lookups/sec. Does this design still make sense?

Metadata
Server

Client

Data

Where is data?
Data access

The Outdated Assumptions and Impact

15

End-host
assumptions

Distributed systems
assumptions

Language/runtimes
assumptions

5. Disregard for the runtime environment:
- group encoded/decoded
- heavy object pressure
- independent layers, no shared object
- materialize all objects

Binary / raw data

Runtime row binary data

Can we reset all assumptions and

start from scratch for modern

high-performance I/O devices?

“Deliver the full hardware performance”

Albis

16

http://www.fotocommunity.de/photo/albiskette-chfleischli/39086845

Albis
● Albis - A file format to store relational tables for read-heavy analytics workloads

● Supports all basic primitive types with data and schema

○ nested schemas are flattened and data is stored in the leaves

● Three fundamental design decisions:

1. avoid CPU pressure, i.e., no encoding, compression, etc.

2. simple data/metadata management on the distributed storage

3. carefully managed runtime - simple row/column storage with a binary API

17

Table Storage Logic

18

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

Int double byte[] char float[]

Table Storage Logic

19

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

00 01

10 11

03 04

13 14

20 21

30 31

40 41

23 24

33 34

43 44

02

12

22

32

42
Ro

w
 g

ro
up

s

Column groups

Int double byte[] char float[]

Table Storage Logic

20

00 01

10 11

03 04

13 14

20 21

30 31

40 41

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

Table Storage Logic

21

03 04

13 14

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

RG0
CG0

RG0
CG1

RG0
CG2

RG1
CG2

RG1
CG1

RG1
CG0

If there is only 1 column group : Row store
If there are ‘n’ column groups : Columns store

Table Storage Logic

22

03 04

13 14

23 24

33 34

43 44

02

12

22

32

42

Ro
w

 g
ro

up
s

Column groups

RG0
CG0

RG0
CG1

RG0
CG2

RG1
CG2

RG1
CG1

RG1
CG0

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema

Row Storage Format

23

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema How is a single row of data stored in
these files?

Row Storage Format

24

Null bitmap

Marking null columns values

Row Storage Format

25

Null bitmap

complete row size

Row Storage Format

26

Null bitmap

complete row size fixed-field area variable-field area

Row Storage Format

27

ptr ptr byte [] ... float [] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[], char, float[] } :

Row Storage Format

28

ptr ptr byte [] ... float [] ...

Null bitmap

complete row size fixed-field area variable-field area

Schema of { int, double, byte[], char, float[] } :
+ 1 byte bitmap (because there are 5 columns)
+ 4 byte size
+ 4 byte (int) + 8 byte (double) + 8 byte (offset + size, ptr) + 1 byte (char) + 8 byte (offset + size, ptr)
 = 34 bytes + variable area.

segment buffer (e.g., 1 MB)

Writing Rows

29

writer object Min, max,
distribution
statistics

HDFS data file HDFS metadata file

Use to implement
filters

Reading Rows

30

table0

RG0 RG1

CG0 CG1 CG2 CG0 CG1 CG2

schema

1. Read schema file

2. Check projection to figure out which files

to read

a. Complete CGs

b. Partial CGs

3. Evaluate filters to skip segments

4. Materialize values

a. Skip value materialization in partial

CG reads

1 2 3 4 5
Row data

More Details in the Paper

● How to evolve schema? Adding and removing columns

● How to evolve data? Adding and removing rows

● How to process Albis files in a relational data processing engine?

● Concerns regarding data imbalance or re-grouping?

● ...

31

Evaluation
All experiments on a 4-node cluster with 100 Gbps network and flash devices

Dataset is TPC-DS tables with the scale factor of 100 (~100 GB of data)

Three fundamental questions

● Does Albis deliver better performance for micro-benchmarks?

● Does micro-benchmark performance translate to better workload

performance?

● What is the performance and space trade-off in Albis?

32

Microbenchmark Performance - Revised

33

100 Gbps

74.9 Gbps: HDFS/NVMe

Microbenchmark Performance - Revised

34

100 Gbps

74.9 Gbps: HDFS/NVMe

Albis delivers 1.9 - 21.3x performance improvements over other formats

Spark/SQL TPC-DS Performance

35

TPC-DS dataset, scale factor = 100
Y axis : CDF of queries
X axis : percentage performance gains

Spark/SQL TPC-DS Performance

36Albis delivers up to 3x performance gains for TPC-DS queries

Space vs. Performance Trade-off

37

None Snappy Gzip zlib

Parquet 58.6 GB
12.5 Gbps

44.3 GB
9.4 Gbps

33.8 GB
8.3 Gbps N/A

ORC 72.0 GB
19.1 Gbps

47.6 GB
17.8 Gbps N/A 36.8 GB

13.0 Gbps

Albis 94.5 GB
59.9 Gbps N/A N/A N/A

Space vs. Performance Trade-off

38

None Snappy Gzip zlib

Parquet 58.6 GB
12.5 Gbps

44.3 GB
9.4 Gbps

33.8 GB
8.3 Gbps N/A

ORC 72.0 GB
19.1 Gbps

47.6 GB
17.8 Gbps N/A 36.8 GB

13.0 Gbps

Albis 94.5 GB
59.9 Gbps N/A N/A N/A

Albis inflates data by 1.3 - 2.7x, but gives 3.4 - 7.2x performance gains

Microbenchmark Performance - Revised

39

100 Gbps

74.9 Gbps: HDFS/NVMe

What would it take to
deliver 100 Gbps?

Microbenchmark Performance - Revised

40

100 Gbps

74.9 Gbps: HDFS/NVMe

JVM object
overheads

Apache Crail (Incubating) - A High-Performance Distributed Data Store, http://crail.incubator.apache.org/

Al
bi

s
+

Cr
ai

l

http://crail.incubator.apache.org/

Microbenchmark Performance - Revised

41

100 Gbps

74.9 Gbps: HDFS/NVMe
Data

density

Al
bi

s
+

Cr
ai

l

Al
bi

s
+

Cr
ai

l +
 N

oO
bj

s

Microbenchmark Performance - Revised

42Albis can deliver performance within 10% of hardware

100 Gbps

74.9 Gbps: HDFS/NVMe

Al
bi

s
+

Cr
ai

l

Al
bi

s
+

Cr
ai

l +
 N

oO
bj

s

Albis - Summary
● Albis - a high-performance file format for storing relational data

○ Open-source address: https://github.com/zrlio/albis

● Motivation: in presence of new network and storage devices, time to revise basic

assumptions
○ no compression or encoding

○ simple data and metadata design

○ efficient object management with a binary API

● Revised software stack to lead to significant performance improvements

○ demonstrated it for the file format

○ very active research field - OSes designs (Arrakis, IX), networking and storage stacks
43

https://github.com/zrlio/albis

Notice

IBM is a trademark of International Business Machines Corporation, registered in many
jurisdictions worldwide. Intel and Intel Xeon are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries. Linux is a registered
trademark of Linus Torvalds in the United States, other countries, or both. Java and all Java-
based trade-marks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates. Other products and service names might be trademarks of IBM or other companies.

44

Backup

45

Microarchitectural Analysis

46

Parquet ORC Arrow Albis Gains

Instructions per row 6.6K 4.9K 1.9K 1.6K 1.2 - 4.1x

Cache-misses per row 9.2 4.6 5.1 3.0 1.7 - 3.0x

Nanosecond per row 105.3 63.9 31.2 20.8 1.5 - 5.0x

